0
|
1 |
//----------------------------------------------------------------------
|
|
2 |
// File: kd_fix_rad_search.cpp
|
|
3 |
// Programmer: Sunil Arya and David Mount
|
|
4 |
// Description: Standard kd-tree fixed-radius kNN search
|
|
5 |
// Last modified: 05/03/05 (Version 1.1)
|
|
6 |
//----------------------------------------------------------------------
|
|
7 |
// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and
|
|
8 |
// David Mount. All Rights Reserved.
|
|
9 |
//
|
|
10 |
// This software and related documentation is part of the Approximate
|
|
11 |
// Nearest Neighbor Library (ANN). This software is provided under
|
|
12 |
// the provisions of the Lesser GNU Public License (LGPL). See the
|
|
13 |
// file ../ReadMe.txt for further information.
|
|
14 |
//
|
|
15 |
// The University of Maryland (U.M.) and the authors make no
|
|
16 |
// representations about the suitability or fitness of this software for
|
|
17 |
// any purpose. It is provided "as is" without express or implied
|
|
18 |
// warranty.
|
|
19 |
//----------------------------------------------------------------------
|
|
20 |
// History:
|
|
21 |
// Revision 1.1 05/03/05
|
|
22 |
// Initial release
|
|
23 |
//----------------------------------------------------------------------
|
|
24 |
|
|
25 |
#include "kd_fix_rad_search.h" // kd fixed-radius search decls
|
|
26 |
|
|
27 |
//----------------------------------------------------------------------
|
|
28 |
// Approximate fixed-radius k nearest neighbor search
|
|
29 |
// The squared radius is provided, and this procedure finds the
|
|
30 |
// k nearest neighbors within the radius, and returns the total
|
|
31 |
// number of points lying within the radius.
|
|
32 |
//
|
|
33 |
// The method used for searching the kd-tree is a variation of the
|
|
34 |
// nearest neighbor search used in kd_search.cpp, except that the
|
|
35 |
// radius of the search ball is known. We refer the reader to that
|
|
36 |
// file for the explanation of the recursive search procedure.
|
|
37 |
//----------------------------------------------------------------------
|
|
38 |
|
|
39 |
//----------------------------------------------------------------------
|
|
40 |
// To keep argument lists short, a number of global variables
|
|
41 |
// are maintained which are common to all the recursive calls.
|
|
42 |
// These are given below.
|
|
43 |
//----------------------------------------------------------------------
|
|
44 |
|
|
45 |
int ANNkdFRDim; // dimension of space
|
|
46 |
ANNpoint ANNkdFRQ; // query point
|
|
47 |
ANNdist ANNkdFRSqRad; // squared radius search bound
|
|
48 |
double ANNkdFRMaxErr; // max tolerable squared error
|
|
49 |
ANNpointArray ANNkdFRPts; // the points
|
|
50 |
ANNmin_k* ANNkdFRPointMK; // set of k closest points
|
|
51 |
int ANNkdFRPtsVisited; // total points visited
|
|
52 |
int ANNkdFRPtsInRange; // number of points in the range
|
|
53 |
|
|
54 |
//----------------------------------------------------------------------
|
|
55 |
// annkFRSearch - fixed radius search for k nearest neighbors
|
|
56 |
//----------------------------------------------------------------------
|
|
57 |
|
|
58 |
int ANNkd_tree::annkFRSearch(
|
|
59 |
ANNpoint q, // the query point
|
|
60 |
ANNdist sqRad, // squared radius search bound
|
|
61 |
int k, // number of near neighbors to return
|
|
62 |
ANNidxArray nn_idx, // nearest neighbor indices (returned)
|
|
63 |
ANNdistArray dd, // the approximate nearest neighbor
|
|
64 |
double eps) // the error bound
|
|
65 |
{
|
|
66 |
ANNkdFRDim = dim; // copy arguments to static equivs
|
|
67 |
ANNkdFRQ = q;
|
|
68 |
ANNkdFRSqRad = sqRad;
|
|
69 |
ANNkdFRPts = pts;
|
|
70 |
ANNkdFRPtsVisited = 0; // initialize count of points visited
|
|
71 |
ANNkdFRPtsInRange = 0; // ...and points in the range
|
|
72 |
|
|
73 |
ANNkdFRMaxErr = ANN_POW(1.0 + eps);
|
|
74 |
ANN_FLOP(2) // increment floating op count
|
|
75 |
|
|
76 |
ANNkdFRPointMK = new ANNmin_k(k); // create set for closest k points
|
|
77 |
// search starting at the root
|
|
78 |
root->ann_FR_search(annBoxDistance(q, bnd_box_lo, bnd_box_hi, dim));
|
|
79 |
|
|
80 |
for (int i = 0; i < k; i++) { // extract the k-th closest points
|
|
81 |
if (dd != NULL)
|
|
82 |
dd[i] = ANNkdFRPointMK->ith_smallest_key(i);
|
|
83 |
if (nn_idx != NULL)
|
|
84 |
nn_idx[i] = ANNkdFRPointMK->ith_smallest_info(i);
|
|
85 |
}
|
|
86 |
|
|
87 |
delete ANNkdFRPointMK; // deallocate closest point set
|
|
88 |
return ANNkdFRPtsInRange; // return final point count
|
|
89 |
}
|
|
90 |
|
|
91 |
//----------------------------------------------------------------------
|
|
92 |
// kd_split::ann_FR_search - search a splitting node
|
|
93 |
// Note: This routine is similar in structure to the standard kNN
|
|
94 |
// search. It visits the subtree that is closer to the query point
|
|
95 |
// first. For fixed-radius search, there is no benefit in visiting
|
|
96 |
// one subtree before the other, but we maintain the same basic
|
|
97 |
// code structure for the sake of uniformity.
|
|
98 |
//----------------------------------------------------------------------
|
|
99 |
|
|
100 |
void ANNkd_split::ann_FR_search(ANNdist box_dist)
|
|
101 |
{
|
|
102 |
// check dist calc term condition
|
|
103 |
if (ANNmaxPtsVisited != 0 && ANNkdFRPtsVisited > ANNmaxPtsVisited) return;
|
|
104 |
|
|
105 |
// distance to cutting plane
|
|
106 |
ANNcoord cut_diff = ANNkdFRQ[cut_dim] - cut_val;
|
|
107 |
|
|
108 |
if (cut_diff < 0) { // left of cutting plane
|
|
109 |
child[ANN_LO]->ann_FR_search(box_dist);// visit closer child first
|
|
110 |
|
|
111 |
ANNcoord box_diff = cd_bnds[ANN_LO] - ANNkdFRQ[cut_dim];
|
|
112 |
if (box_diff < 0) // within bounds - ignore
|
|
113 |
box_diff = 0;
|
|
114 |
// distance to further box
|
|
115 |
box_dist = (ANNdist) ANN_SUM(box_dist,
|
|
116 |
ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff)));
|
|
117 |
|
|
118 |
// visit further child if in range
|
|
119 |
if (box_dist * ANNkdFRMaxErr <= ANNkdFRSqRad)
|
|
120 |
child[ANN_HI]->ann_FR_search(box_dist);
|
|
121 |
|
|
122 |
}
|
|
123 |
else { // right of cutting plane
|
|
124 |
child[ANN_HI]->ann_FR_search(box_dist);// visit closer child first
|
|
125 |
|
|
126 |
ANNcoord box_diff = ANNkdFRQ[cut_dim] - cd_bnds[ANN_HI];
|
|
127 |
if (box_diff < 0) // within bounds - ignore
|
|
128 |
box_diff = 0;
|
|
129 |
// distance to further box
|
|
130 |
box_dist = (ANNdist) ANN_SUM(box_dist,
|
|
131 |
ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff)));
|
|
132 |
|
|
133 |
// visit further child if close enough
|
|
134 |
if (box_dist * ANNkdFRMaxErr <= ANNkdFRSqRad)
|
|
135 |
child[ANN_LO]->ann_FR_search(box_dist);
|
|
136 |
|
|
137 |
}
|
|
138 |
ANN_FLOP(13) // increment floating ops
|
|
139 |
ANN_SPL(1) // one more splitting node visited
|
|
140 |
}
|
|
141 |
|
|
142 |
//----------------------------------------------------------------------
|
|
143 |
// kd_leaf::ann_FR_search - search points in a leaf node
|
|
144 |
// Note: The unreadability of this code is the result of
|
|
145 |
// some fine tuning to replace indexing by pointer operations.
|
|
146 |
//----------------------------------------------------------------------
|
|
147 |
|
|
148 |
void ANNkd_leaf::ann_FR_search(ANNdist box_dist)
|
|
149 |
{
|
|
150 |
register ANNdist dist; // distance to data point
|
|
151 |
register ANNcoord* pp; // data coordinate pointer
|
|
152 |
register ANNcoord* qq; // query coordinate pointer
|
|
153 |
register ANNcoord t;
|
|
154 |
register int d;
|
|
155 |
|
|
156 |
for (int i = 0; i < n_pts; i++) { // check points in bucket
|
|
157 |
|
|
158 |
pp = ANNkdFRPts[bkt[i]]; // first coord of next data point
|
|
159 |
qq = ANNkdFRQ; // first coord of query point
|
|
160 |
dist = 0;
|
|
161 |
|
|
162 |
for(d = 0; d < ANNkdFRDim; d++) {
|
|
163 |
ANN_COORD(1) // one more coordinate hit
|
|
164 |
ANN_FLOP(5) // increment floating ops
|
|
165 |
|
|
166 |
t = *(qq++) - *(pp++); // compute length and adv coordinate
|
|
167 |
// exceeds dist to k-th smallest?
|
|
168 |
if( (dist = ANN_SUM(dist, ANN_POW(t))) > ANNkdFRSqRad) {
|
|
169 |
break;
|
|
170 |
}
|
|
171 |
}
|
|
172 |
|
|
173 |
if (d >= ANNkdFRDim && // among the k best?
|
|
174 |
(ANN_ALLOW_SELF_MATCH || dist!=0)) { // and no self-match problem
|
|
175 |
// add it to the list
|
|
176 |
ANNkdFRPointMK->insert(dist, bkt[i]);
|
|
177 |
ANNkdFRPtsInRange++; // increment point count
|
|
178 |
}
|
|
179 |
}
|
|
180 |
ANN_LEAF(1) // one more leaf node visited
|
|
181 |
ANN_PTS(n_pts) // increment points visited
|
|
182 |
ANNkdFRPtsVisited += n_pts; // increment number of points visited
|
|
183 |
}
|