Added docs for StaticCohomologyPersistence + ImagePersistence + circular.smooth + minor fixes in adaptor.py
from _dionysus import *
from distances import l2, ExplicitDistances, points_file
from zigzag import *
from adaptor import *
import circular
def init_with_none(self, iter, data = None): # convenience: data defaults to None
self._cpp_init_(iter, data)
def repr_with_data(self):
str = self._cpp_repr_()
if type(self.data) == float:
str += ' %f' % self.data
return str
Simplex._cpp_init_ = Simplex.__init__
Simplex.__init__ = init_with_none
Simplex._cpp_repr_ = Simplex.__repr__
Simplex.__repr__ = repr_with_data
def Simplex_getinitargs(self):
return ([v for v in self.vertices], self.data)
Simplex.__getinitargs__ = Simplex_getinitargs
def data_cmp(s1, s2):
return cmp(s1.data, s2.data)
def data_dim_cmp(s1,s2):
return cmp(s1.dimension(), s2.dimension()) or data_cmp(s1,s2)
def dim_data_cmp(s1,s2):
return data_cmp(s1,s2) or cmp(s1.dimension(), s2.dimension())
def vertex_dim_cmp(s1, s2):
return cmp(s1.dimension(), s2.dimension()) or vertex_cmp(s1, s2)
def fill_alpha_complex(points, simplices):
if len(points[0]) == 2: # 2D
fill_alpha2D_complex(points, simplices)
elif len(points[0]) == 3: # 3D
fill_alpha3D_complex(points, simplices)
def closure(simplices, k):
"""Compute the k-skeleton of the closure of the list of simplices."""
res = set()
from itertools import combinations
for s in simplices:
for kk in xrange(1, k+2):
for face in combinations(s.vertices, min(s.dimension() + 1, kk)):
res.add(Simplex(face, s.data))
return list(res)
_init_diagrams = init_diagrams
def init_diagrams(p, f, evaluator = None, data = None):
if isinstance(p, StaticCohomologyPersistence):
return init_diagrams_from_adaptor(p,f, evaluator, data)
return _init_diagrams(p,f, evaluator, data)