Added docs for StaticCohomologyPersistence + ImagePersistence + circular.smooth + minor fixes in adaptor.py
#include <geometry/euclidean.h>
#include <geometry/polynomial.h>
#include <vector>
#include <iostream>
#include <cmath>
typedef UPolynomial<ZZ> PolynomialKernel;
typedef PolynomialKernel::Polynomial Polynomial;
typedef PolynomialKernel::Function RationalF;
typedef Kernel<RationalF> K;
typedef K::Point Point;
typedef K::Sphere Sphere;
typedef K::PointContainer PointContainer;
typedef K::MatrixType MatrixType;
int main()
{
K k(3);
std::vector<Point> points(7, k.origin());
points[0][0] = Polynomial(0); points[0][1] = Polynomial(0); points[0][2] = Polynomial(0);
points[1][0] = Polynomial(0); points[1][1] = Polynomial("x+2"); points[1][2] = Polynomial(0);
points[2][0] = Polynomial(0); points[2][1] = Polynomial(0); points[2][2] = Polynomial("x^2 + 5");
points[3][0] = Polynomial("x^3"); points[3][1] = Polynomial(1); points[3][2] = Polynomial("x");
points[4][0] = Polynomial(0); points[4][1] = Polynomial("x^2 + 2*x + 5"); points[4][2] = Polynomial(0);
points[5][0] = Polynomial("x^3 + 3*x + 7"); points[5][1] = Polynomial(0); points[5][2] = Polynomial(0);
points[6][0] = Polynomial(0); points[6][1] = Polynomial("x + 6"); points[6][2] = Polynomial("x");
// Solving polynomials
{
PolynomialKernel::RootStack roots;
std::cout << "Solving " << points[5][0] << ": " << std::endl;
PolynomialKernel::solve(points[5][0], roots);
while (!roots.empty()) { std::cout << roots.top() << std::endl; roots.pop(); }
}
{
Polynomial p("x^3 - 2*x + 1");
PolynomialKernel::RootStack roots;
std::cout << "Solving " << p << ": " << std::endl;
PolynomialKernel::solve(p, roots);
while (!roots.empty()) { std::cout << roots.top() << std::endl; roots.pop(); }
}
#if 0
// FIXME: explore
{
UPolynomial<QQ>::Polynomial p("1.2*x + 3.67");
UPolynomial<QQ>::RootStack roots;
UPolynomial<QQ>::solve(p, roots);
while (!roots.empty()) { std::cout << roots.top() << std::endl; roots.pop(); }
}
#endif
{
RationalF r1 = Polynomial("2*x - 4");
RationalF r2 = Polynomial("x^3 - 3");
RationalF r3 = Polynomial("x^2 - 3*x^3");
std::cout << r2 - r1 << std::endl;
std::cout << RationalF(Polynomial("2*x"), Polynomial(1)*Polynomial(1)) << std::endl;
PolynomialKernel::RootStack roots;
std::cout << "Solving " << (r2 - r1) << ": " << std::endl;
PolynomialKernel::solve(r2 - r1, roots);
while (!roots.empty()) { std::cout << roots.top() << std::endl; roots.pop(); }
std::cout << "Solving " << (r3 - r1) << ": " << std::endl;
PolynomialKernel::solve(r3 - r1, roots);
while (!roots.empty()) { std::cout << roots.top() << std::endl; roots.pop(); }
std::cout << "Solving " << (r3 - r2) << ": " << std::endl;
PolynomialKernel::solve(r3 - r2, roots);
//std::cout << "Sign of r3 at " << roots.top() << " is " << PolynomialKernel::sign_at(r3, roots.top()) << std::endl;
while (!roots.empty()) { std::cout << roots.top() << std::endl; roots.pop(); }
}
// Edges
{
PointContainer vertices(2);
vertices[0] = &points[0]; vertices[1] = &points[2];
std::cout << "{0, 2}:" << std::endl;
Sphere s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << " " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, *vertices[1]) << std::endl;
vertices[0] = &points[0]; vertices[1] = &points[3];
std::cout << "{0, 3}:" << std::endl;
s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << " " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, *vertices[1]) << std::endl;
}
#if 1
// Triangles
{
PointContainer vertices(3);
vertices[0] = &points[0]; vertices[1] = &points[3]; vertices[2] = &points[1];
std::cout << "{0, 3, 1}:" << std::endl;;
Sphere s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << " " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, *vertices[1]) << std::endl;
vertices[0] = &points[0]; vertices[1] = &points[4]; vertices[2] = &points[5];
std::cout << "{0, 4, 5}:" << std::endl;
s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << " " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, *vertices[1]) << std::endl;
// Degenerate
vertices[0] = &points[0]; vertices[1] = &points[1]; vertices[2] = &points[6];
std::cout << "{0, 1, 6}:" << std::endl;
s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << " " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, *vertices[1]) << std::endl;
}
// Tetrahedron
{
PointContainer vertices(4);
vertices[0] = &points[3]; vertices[1] = &points[1]; vertices[2] = &points[2]; vertices[3] = &points[0];
std::cout << "{3, 1, 2, 0}:" << std::endl;
Sphere s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << " " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, *vertices[1]) << std::endl;
}
// Tetrahedron
{
PointContainer vertices(3);
vertices[0] = &points[3]; vertices[1] = &points[1]; vertices[2] = &points[2];
std::cout << "{3, 1, 2}:" << std::endl;
Sphere s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << ", radius: " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, points[0]) << std::endl;
}
#endif
}