Added Python closure function (for computing a k-skeleton of a closure of a list of simplices)
# Computes the persistence diagram of the alpha shapes in both 2D and 3D
# (decided dynamically based on the input file)
from dionysus import Filtration, StaticPersistence, data_dim_cmp, vertex_cmp, \
fill_alpha3D_complex, fill_alpha2D_complex, points_file
from sys import argv, exit
from math import sqrt
if len(argv) < 2:
print "Usage: %s POINTS" % argv[0]
exit()
points = [p for p in points_file(argv[1])]
f = Filtration()
if len(points[0]) == 2: # 2D
fill_alpha2D_complex(points, f)
elif len(points[1]) == 3: # 3D
fill_alpha3D_complex(points, f)
print "Total number of simplices:", len(f)
f.sort(data_dim_cmp)
print "Filtration initialized"
p = StaticPersistence(f)
print "StaticPersistence initialized"
p.pair_simplices()
print "Simplices paired"
print "Outputting persistence diagram"
smap = p.make_simplex_map(f)
for i in p:
if i.sign():
b = smap[i]
if i.unpaired():
print b.dimension(), sqrt(b.data[0]), "inf"
continue
d = smap[i.pair()]
print b.dimension(), sqrt(b.data[0]), sqrt(d.data[0])