Added Python closure function (for computing a k-skeleton of a closure of a list of simplices)
#ifndef __RATIONAL_FUNCTION_H__
#define __RATIONAL_FUNCTION_H__
#include <iostream>
#include "number-traits.h"
template <class Polynomial_>
class RationalFunction
{
public:
typedef Polynomial_ Polynomial;
typedef typename Polynomial::coeff_t CoefficientType;
typedef typename Polynomial::value_type ValueType;
/// \name Constructors
/// @{
RationalFunction():
numerator_(CoefficientType(0)),
denominator_(CoefficientType(1)) {}
RationalFunction(const Polynomial& p):
numerator_(p),
denominator_(CoefficientType(1)) {}
RationalFunction(const Polynomial& num, const Polynomial& denom):
numerator_(num), denominator_(denom) { normalize(); }
RationalFunction(const RationalFunction& other):
numerator_(other.numerator_),
denominator_(other.denominator_) { normalize(); }
/// @}
/// \name Operators
/// @{
RationalFunction operator-() const;
RationalFunction operator+(const RationalFunction& o) const;
RationalFunction operator-(const RationalFunction& o) const;
RationalFunction operator*(const RationalFunction& o) const;
RationalFunction operator/(const RationalFunction& o) const;
RationalFunction operator+(const CoefficientType& a) const;
RationalFunction operator-(const CoefficientType& a) const;
RationalFunction operator*(const CoefficientType& a) const;
RationalFunction operator/(const CoefficientType& a) const;
/// @}
/// \name Modifiers
/// @{
RationalFunction& operator+=(const RationalFunction& o);
RationalFunction& operator-=(const RationalFunction& o);
RationalFunction& operator*=(const RationalFunction& o);
RationalFunction& operator/=(const RationalFunction& o);
/// @}
/// \name Assignment
/// @{
RationalFunction& operator=(const RationalFunction& o);
//RationalFunction& operator=(const Polynomial& o);
/// @}
/// \name Evaluation
/// @{
ValueType operator()(const ValueType& t) const;
bool operator==(const RationalFunction& o) const;
bool operator!=(const RationalFunction& o) const { return !operator==(o); }
/// @}
/// \name Accessors
/// @{
const Polynomial& numerator() const { return numerator_; }
const Polynomial& denominator() const { return denominator_; }
/// @}
RationalFunction& normalize();
private:
Polynomial numerator_, denominator_;
};
template<class P>
struct number_traits<RationalFunction<P> >
{
typedef RationalFunction<P> NumberType;
static NumberType& normalize(NumberType& n) { return n.normalize(); }
};
template<class Polynomial_>
std::ostream&
operator<<(std::ostream& out, const RationalFunction<Polynomial_>& r)
{ return out << r.numerator() << " / " << r.denominator(); }// << ", gcd: " << gcd(r.numerator(), r.denominator()); }
template<class Polynomial_>
inline RationalFunction<Polynomial_>
operator*(const typename RationalFunction<Polynomial_>::CoefficientType& a, const RationalFunction<Polynomial_>& r)
{ return (r * a); }
template<class Polynomial_>
inline RationalFunction<Polynomial_>
operator+(const typename RationalFunction<Polynomial_>::CoefficientType& a, const RationalFunction<Polynomial_>& r)
{ return (r + a); }
template<class Polynomial_>
inline RationalFunction<Polynomial_>
operator-(const typename RationalFunction<Polynomial_>::NT& a, const RationalFunction<Polynomial_>& r)
{ return -(r - a); }
#include "rational-function.hpp"
#endif // __RATIONAL_FUNCTION_H__