explicitely converts a Dimension (short int) into a size_t, for removing a warning
#include <utilities/log.h>
AlphaSimplex2D::
AlphaSimplex2D(const Delaunay2D::Vertex& v): alpha_(0), attached_(false)
{
for (int i = 0; i < 3; ++i)
if (v.face()->vertex(i)->point() == v.point())
Parent::add(v.face()->vertex(i));
}
AlphaSimplex2D::
AlphaSimplex2D(const Delaunay2D::Edge& e): attached_(false)
{
Face_handle f = e.first;
for (int i = 0; i < 3; ++i)
if (i != e.second)
Parent::add(f->vertex(i));
}
AlphaSimplex2D::
AlphaSimplex2D(const Delaunay2D::Edge& e, const SimplexSet& simplices, const Delaunay2D& Dt): attached_(false)
{
Face_handle f = e.first;
for (int i = 0; i < 3; ++i)
if (i != e.second)
Parent::add(f->vertex(i));
Face_handle o = f->neighbor(e.second);
int oi = o->index(f);
VertexSet::const_iterator v = static_cast<const Parent*>(this)->vertices().begin();
const Point& p1 = (*v++)->point();
const Point& p2 = (*v)->point();
attached_ = false;
if (!Dt.is_infinite(f->vertex(e.second)) &&
CGAL::side_of_bounded_circle(p1, p2,
f->vertex(e.second)->point()) == CGAL::ON_BOUNDED_SIDE)
attached_ = true;
else if (!Dt.is_infinite(o->vertex(oi)) &&
CGAL::side_of_bounded_circle(p1, p2,
o->vertex(oi)->point()) == CGAL::ON_BOUNDED_SIDE)
attached_ = true;
else
alpha_ = squared_radius(p1, p2);
if (attached_)
{
if (Dt.is_infinite(f))
alpha_ = simplices.find(AlphaSimplex2D(*o))->alpha();
else if (Dt.is_infinite(o))
alpha_ = simplices.find(AlphaSimplex2D(*f))->alpha();
else
alpha_ = std::min(simplices.find(AlphaSimplex2D(*f))->alpha(),
simplices.find(AlphaSimplex2D(*o))->alpha());
}
}
AlphaSimplex2D::
AlphaSimplex2D(const Delaunay2D::Face& f): attached_(false)
{
for (int i = 0; i < 3; ++i)
Parent::add(f.vertex(i));
VertexSet::const_iterator v = static_cast<const Parent*>(this)->vertices().begin();
Point p1 = (*v++)->point();
Point p2 = (*v++)->point();
Point p3 = (*v)->point();
alpha_ = CGAL::squared_radius(p1, p2, p3);
}
bool
AlphaSimplex2D::AlphaOrder::
operator()(const AlphaSimplex2D& first, const AlphaSimplex2D& second) const
{
if (first.alpha() == second.alpha())
return (first.dimension() < second.dimension());
else
return (first.alpha() < second.alpha());
}
std::ostream&
AlphaSimplex2D::
operator<<(std::ostream& out) const
{
for (VertexSet::const_iterator cur = Parent::vertices().begin();
cur != Parent::vertices().end(); ++cur)
out << **cur << ", ";
out << "value = " << value();
return out;
}
void fill_simplex_set(const Delaunay2D& Dt, AlphaSimplex2D::SimplexSet& simplices)
{
for(Face_iterator cur = Dt.finite_faces_begin(); cur != Dt.finite_faces_end(); ++cur)
simplices.insert(AlphaSimplex2D(*cur));
rInfo("Faces inserted");
for(Edge_iterator cur = Dt.finite_edges_begin(); cur != Dt.finite_edges_end(); ++cur)
simplices.insert(AlphaSimplex2D(*cur, simplices, Dt));
rInfo("Edges inserted");
for(Vertex_iterator cur = Dt.finite_vertices_begin(); cur != Dt.finite_vertices_end(); ++cur)
simplices.insert(AlphaSimplex2D(*cur));
rInfo("Vertices inserted");
}
void fill_complex(const Delaunay2D& Dt, AlphaSimplex2DVector& alpha_order)
{
// Compute all simplices with their alpha values and attachment information
AlphaSimplex2D::SimplexSet simplices;
fill_simplex_set(Dt, simplices);
// Sort simplices by their alpha values
alpha_order.resize(simplices.size());
std::copy(simplices.begin(), simplices.end(), alpha_order.begin());
// std::sort(alpha_order.begin(), alpha_order.end(), AlphaSimplex2D::AlphaOrder());
std::sort(alpha_order.begin(), alpha_order.end(), AlphaSimplex2D::VertexComparison());
}