#include <utilities/log.h>
#include <boost/foreach.hpp>
AlphaSimplex2D::
AlphaSimplex2D(const Delaunay2D::Vertex& v): alpha_(0), attached_(false)
{
for (int i = 0; i < 3; ++i)
if (v.face()->vertex(i) != Vertex_handle() && v.face()->vertex(i)->point() == v.point())
Parent::add(v.face()->vertex(i));
}
AlphaSimplex2D::
AlphaSimplex2D(const Delaunay2D::Edge& e): attached_(false)
{
Face_handle f = e.first;
for (int i = 0; i < 3; ++i)
if (i != e.second)
Parent::add(f->vertex(i));
}
// AlphaSimplex2D::
// AlphaSimplex2D(const Delaunay2D::Edge& e, const SimplexSet& simplices, const Delaunay2D& Dt): attached_(false)
// {
// Face_handle f = e.first;
// for (int i = 0; i < 3; ++i)
// if (i != e.second)
// Parent::add(f->vertex(i));
//
// VertexSet::const_iterator v = static_cast<const Parent*>(this)->vertices().begin();
// const Point& p1 = (*v++)->point();
// const Point& p2 = (*v)->point();
//
// Face_handle o = f->neighbor(e.second);
// if (o == Face_handle())
// {
// alpha_ = CGAL::squared_radius(p1, p2);
// return;
// }
// int oi = o->index(f);
//
// attached_ = false;
// if (!Dt.is_infinite(f->vertex(e.second)) &&
// CGAL::side_of_bounded_circle(p1, p2,
// f->vertex(e.second)->point()) == CGAL::ON_BOUNDED_SIDE)
// attached_ = true;
// else if (!Dt.is_infinite(o->vertex(oi)) &&
// CGAL::side_of_bounded_circle(p1, p2,
// o->vertex(oi)->point()) == CGAL::ON_BOUNDED_SIDE)
// attached_ = true;
// else
// alpha_ = CGAL::squared_radius(p1, p2);
//
// if (attached_)
// {
// if (Dt.is_infinite(f))
// alpha_ = simplices.find(AlphaSimplex2D(*o))->alpha();
// else if (Dt.is_infinite(o))
// alpha_ = simplices.find(AlphaSimplex2D(*f))->alpha();
// else
// alpha_ = std::min(simplices.find(AlphaSimplex2D(*f))->alpha(),
// simplices.find(AlphaSimplex2D(*o))->alpha());
// }
// }
// VR modified for periodic DT
AlphaSimplex2D::
AlphaSimplex2D(const Delaunay2D::Edge& e, const SimplexSet& simplices, const Delaunay2D& Dt, const RealValue r): attached_(false)
{
Face_handle f = e.first;
for (int i = 0; i < 3; ++i)
if (i != e.second)
Parent::add(f->vertex(i));
Face_handle o = f->neighbor(e.second);
int oi = o->index(f);
alpha_ = r;
attached_ = false;
// First check if the circle centred on the edge contains its f-opposite vertex
Point fpt = Dt.point(Dt.periodic_point(e.first,e.second));
Delaunay2D::Segment fseg = Dt.segment(e.first,e.second);
if (CGAL::side_of_bounded_circle(fseg[0],fseg[1],fpt) == CGAL::ON_BOUNDED_SIDE)
attached_ = true;
// Then check if the circle centred on the edge contains its o-opposite vertex.
Point opt = Dt.point(Dt.periodic_point(o,oi));
Delaunay2D::Segment oseg = Dt.segment(o,oi);
if (CGAL::side_of_bounded_circle(oseg[0],oseg[1],opt) == CGAL::ON_BOUNDED_SIDE)
attached_ = true;
if (attached_)
{
//std::cout << "found an attached edge" << std::endl;
alpha_ = std::min(simplices.find(AlphaSimplex2D(*f))->alpha(),
simplices.find(AlphaSimplex2D(*o))->alpha());
}
}
// AlphaSimplex2D::
// AlphaSimplex2D(const Delaunay2D::Face& f): attached_(false)
// {
// for (int i = 0; i < 3; ++i)
// Parent::add(f.vertex(i));
// VertexSet::const_iterator v = static_cast<const Parent*>(this)->vertices().begin();
// Point p1 = (*v++)->point();
// Point p2 = (*v++)->point();
// Point p3 = (*v)->point();
// alpha_ = CGAL::squared_radius(p1, p2, p3);
// }
// VR: new initialisation for periodic DT faces.
AlphaSimplex2D::
AlphaSimplex2D(const Delaunay2D::Face& f)
{
for (int i = 0; i < 3; ++i)
Parent::add(f.vertex(i));
}
AlphaSimplex2D::
AlphaSimplex2D(const Delaunay2D::Face& f, const RealValue r): attached_(false)
{
for (int i = 0; i < 3; ++i)
Parent::add(f.vertex(i));
alpha_ = r;
}
bool
AlphaSimplex2D::AlphaOrder::
operator()(const AlphaSimplex2D& first, const AlphaSimplex2D& second) const
{
if (first.alpha() == second.alpha())
return (first.dimension() < second.dimension());
else
return (first.alpha() < second.alpha());
}
std::ostream&
AlphaSimplex2D::
operator<<(std::ostream& out) const
{
for (VertexSet::const_iterator cur = Parent::vertices().begin();
cur != Parent::vertices().end(); ++cur)
out << **cur << ", ";
out << "value = " << value();
return out;
}
// void fill_simplex_set(const Delaunay2D& Dt, AlphaSimplex2D::SimplexSet& simplices)
// {
// for(Face_iterator cur = Dt.finite_faces_begin(); cur != Dt.finite_faces_end(); ++cur)
// simplices.insert(AlphaSimplex2D(*cur));
// rInfo("Faces inserted");
// for(Edge_iterator cur = Dt.finite_edges_begin(); cur != Dt.finite_edges_end(); ++cur)
// simplices.insert(AlphaSimplex2D(*cur, simplices, Dt));
// rInfo("Edges inserted");
// for(Vertex_iterator cur = Dt.finite_vertices_begin(); cur != Dt.finite_vertices_end(); ++cur)
// simplices.insert(AlphaSimplex2D(*cur));
// rInfo("Vertices inserted");
// }
//VR: modified function for periodic DT
void fill_simplex_set(const Delaunay2D& Dt, AlphaSimplex2D::SimplexSet& simplices)
{
// Compute all simplices with their alpha values and attachment information
int counter = 0;
for(Face_iterator cur = Dt.faces_begin(); cur != Dt.faces_end(); ++cur){
//Delaunay2D::Periodic_triangle ptri = Dt.periodic_triangle(cur);
//Delaunay2D::Triangle tri = Dt.triangle(ptri);
Delaunay2D::Triangle tri = Dt.triangle(cur);
RealValue sqrad = CGAL::squared_radius(tri[0], tri[1], tri[2]);
simplices.insert(AlphaSimplex2D(*cur, sqrad));
counter++;
}
//std::cout << "Number of triangles inserted in filtration " << counter << std::endl;
rInfo("Facets inserted");
counter = 0;
for(Edge_iterator cur = Dt.edges_begin(); cur != Dt.edges_end(); ++cur){
//Delaunay2D::Periodic_segment pseg = Dt.periodic_segment(*cur);
//Delaunay2D::Segment seg = Dt.segment(pseg);
Delaunay2D::Segment seg = Dt.segment(cur);
RealValue sqrad = CGAL::squared_radius(seg[0],seg[1]);
simplices.insert(AlphaSimplex2D(*cur, simplices, Dt, sqrad));
counter++;
}
//std::cout << "Number of edges inserted in filtration " << counter << std::endl;
rInfo("Edges inserted");
for(Vertex_iterator cur = Dt.vertices_begin(); cur != Dt.vertices_end(); ++cur)
simplices.insert(AlphaSimplex2D(*cur));
rInfo("Vertices inserted");
}
template<class Filtration>
void fill_complex(const Delaunay2D& Dt, Filtration& filtration)
{
// Compute all simplices with their alpha values and attachment information
// TODO: this can be optimized; the new Filtration can act as a SimplexSet
AlphaSimplex2D::SimplexSet simplices;
fill_simplex_set(Dt, simplices);
BOOST_FOREACH(const AlphaSimplex2D& s, simplices)
filtration.push_back(s);
}