Cleaned up Python bindings to restore functionality:
* StaticPersistence is iterable, its nodes are usable (sign, pair, cycle)
* StaticPersistence knows how to map its nodes into Filtration indices
* moved PythonCmp into utils.h
* minor cosmetic changes
#ifndef __POLYNOMIAL_H__
#define __POLYNOMIAL_H__
#include <synaps/upol.h>
#include <synaps/upol/gcd.h>
#include <synaps/usolve/Algebraic.h>
#include <synaps/usolve/algebraic/sign_fct.h>
#include <synaps/usolve/bezier/SlvBzStd.h>
//#include <synaps/usolve/Sturm.h>
//#include <synaps/arithm/Infinity.h>
#include <synaps/arithm/gmp.h>
#include <stack>
#include "rational-function.h"
template<class T> class SynapsTraits;
template<class T>
class UPolynomial
{
public:
typedef typename SynapsTraits<T>::Polynomial Polynomial;
typedef RationalFunction<Polynomial> RationalFunctionP;
typedef RationalFunctionP Function;
typedef typename SynapsTraits<T>::Solver Solver;
typedef typename SynapsTraits<T>::RootType RootType;
typedef std::stack<RootType> RootStack;
static void solve(const RationalFunctionP& rf, RootStack& stack);
static RootType root(const T& r) { return SynapsTraits<T>::root(r); }
static int sign_at(const RationalFunctionP& rf, const RootType& r);
static RootType between(const RootType& r1, const RootType& r2) { return SynapsTraits<T>::between(r1,r2); }
static int sign_at_negative_infinity(const RationalFunctionP& rf);
};
template<class T>
struct SynapsTraits ///< Suitable for double
{
typedef T CoefficientType;
typedef T RootType;
typedef SYNAPS::UPolDse<CoefficientType> Polynomial;
typedef SYNAPS::SlvBzStd<RootType, CoefficientType> Solver;
typedef Polynomial SolverPolynomial;
static RootType root(CoefficientType r) { return r; }
static unsigned int multiplicity(RootType r) { return 1; }
static int sign_at(const Polynomial& p, RootType r) { return SYNAPS::UPOLDAR::sign_at(p, r); }
static RootType between(RootType r1, RootType r2) { return (r1 + r2)/2; }
static SolverPolynomial convert(const Polynomial& p) { return p; }
};
template<>
struct SynapsTraits<ZZ>
{
typedef ZZ CoefficientType;
typedef SYNAPS::UPolDse<CoefficientType> Polynomial;
typedef Polynomial SolverPolynomial;
typedef SYNAPS::Algebraic<ZZ> Solver;
typedef Solver::root_t RootType;
static RootType root(const CoefficientType& r) { CoefficientType p[2] = {-r, 1}; return SYNAPS::solve(Polynomial(2, p), Solver(), 0);}
static unsigned int multiplicity(const RootType& r) { return r.multiplicity(); }
static int sign_at(const Polynomial& p,
const RootType& r) { return SYNAPS::ALGEBRAIC::sign_at(p, r); }
//static RootType between(const RootType& r1, const RootType& r2) { RootType r = r1; r += r2; r /= root(2); return r; }
static SolverPolynomial convert(const Polynomial& p) { return p; }
};
template<>
struct SynapsTraits<QQ>
{
typedef QQ CoefficientType;
typedef SYNAPS::UPolDse<CoefficientType> Polynomial;
typedef SYNAPS::Algebraic<ZZ> Solver;
typedef SYNAPS::UPolDse<ZZ> SolverPolynomial;
typedef Solver::root_t RootType;
static RootType root(const CoefficientType& r);
static unsigned int multiplicity(const RootType& r) { return r.multiplicity(); }
static int sign_at(const Polynomial& p,
const RootType& r) { return SYNAPS::ALGEBRAIC::sign_at(convert(p), r); }
//static RootType between(const RootType& r1, const RootType& r2) { RootType r = r1; r += r2; r /= root(2); return r; }
static SolverPolynomial convert(const Polynomial& p);
};
#include "polynomial.hpp"
#endif