Added code to expose the persistence_diagram class, the bottleneck_distance function and the point class to python.
Most of the commonly used methods for each class have been exported.
The constructor for point now requires that a data argument be provided along with x and y coord. This needs to be made optional.
The constructor for persistence_diagram could possibly be rewritten as well.
#include <utilities/log.h>
#include <boost/foreach.hpp>
AlphaSimplex3D::
AlphaSimplex3D(const Delaunay3D::Vertex& v): alpha_(0), attached_(false)
{
for (int i = 0; i < 4; ++i)
if (v.cell()->vertex(i)->point() == v.point())
Parent::add(v.cell()->vertex(i));
}
AlphaSimplex3D::
AlphaSimplex3D(const Delaunay3D::Edge& e)
{
Cell_handle c = e.first;
Parent::add(c->vertex(e.second));
Parent::add(c->vertex(e.third));
}
AlphaSimplex3D::
AlphaSimplex3D(const Delaunay3D::Edge& e, const SimplexSet& simplices, const Delaunay3D& Dt, Facet_circulator facet_bg)
{
Cell_handle c = e.first;
Parent::add(c->vertex(e.second));
Parent::add(c->vertex(e.third));
Facet_circulator cur = facet_bg;
while (Dt.is_infinite(*cur)) ++cur;
SimplexSet::const_iterator cur_iter = simplices.find(AlphaSimplex3D(*cur));
RealValue min = cur_iter->alpha();
const VertexSet& vertices = static_cast<const Parent*>(this)->vertices();
VertexSet::const_iterator v = vertices.begin();
const Point& p1 = (*v++)->point();
const Point& p2 = (*v)->point();
attached_ = false;
if (facet_bg != 0) do
{
VertexSet::const_iterator v = vertices.begin();
int i0 = (*cur).first->index(*v++);
int i1 = (*cur).first->index(*v);
int i = 6 - i0 - i1 - (*cur).second;
if (Dt.is_infinite(cur->first->vertex(i))) { ++cur; continue; }
Point p3 = (*cur).first->vertex(i)->point();
cur_iter = simplices.find(AlphaSimplex3D(*cur));
if (CGAL::side_of_bounded_sphere(p1, p2, p3) == CGAL::ON_BOUNDED_SIDE)
attached_ = true;
RealValue val = cur_iter->alpha();
if (val < min)
min = val;
++cur;
} while (cur != facet_bg);
if (attached_)
alpha_ = min;
else
alpha_ = CGAL::squared_radius(p1, p2);
}
AlphaSimplex3D::
AlphaSimplex3D(const Delaunay3D::Facet& f)
{
Cell_handle c = f.first;
for (int i = 0; i < 4; ++i)
if (i != f.second)
Parent::add(c->vertex(i));
}
AlphaSimplex3D::
AlphaSimplex3D(const Delaunay3D::Facet& f, const SimplexSet& simplices, const Delaunay3D& Dt)
{
Cell_handle c = f.first;
for (int i = 0; i < 4; ++i)
if (i != f.second)
Parent::add(c->vertex(i));
Cell_handle o = c->neighbor(f.second);
int oi = o->index(c);
VertexSet::const_iterator v = static_cast<const Parent*>(this)->vertices().begin();
const Point& p1 = (*v++)->point();
const Point& p2 = (*v++)->point();
const Point& p3 = (*v)->point();
attached_ = false;
if (!Dt.is_infinite(c->vertex(f.second)) &&
CGAL::side_of_bounded_sphere(p1, p2, p3,
c->vertex(f.second)->point()) == CGAL::ON_BOUNDED_SIDE)
attached_ = true;
else if (!Dt.is_infinite(o->vertex(oi)) &&
CGAL::side_of_bounded_sphere(p1, p2, p3,
o->vertex(oi)->point()) == CGAL::ON_BOUNDED_SIDE)
attached_ = true;
else
alpha_ = squared_radius(p1, p2, p3);
if (attached_)
{
if (Dt.is_infinite(c))
alpha_ = simplices.find(AlphaSimplex3D(*o))->alpha();
else if (Dt.is_infinite(o))
alpha_ = simplices.find(AlphaSimplex3D(*c))->alpha();
else
alpha_ = std::min(simplices.find(AlphaSimplex3D(*c))->alpha(),
simplices.find(AlphaSimplex3D(*o))->alpha());
}
}
AlphaSimplex3D::
AlphaSimplex3D(const Delaunay3D::Cell& c): attached_(false)
{
for (int i = 0; i < 4; ++i)
Parent::add(c.vertex(i));
VertexSet::const_iterator v = static_cast<const Parent*>(this)->vertices().begin();
Point p1 = (*v++)->point();
Point p2 = (*v++)->point();
Point p3 = (*v++)->point();
Point p4 = (*v)->point();
alpha_ = CGAL::squared_radius(p1, p2, p3, p4);
}
bool
AlphaSimplex3D::AlphaOrder::
operator()(const AlphaSimplex3D& first, const AlphaSimplex3D& second) const
{
if (first.alpha() == second.alpha())
return (first.dimension() < second.dimension());
else
return (first.alpha() < second.alpha());
}
std::ostream&
AlphaSimplex3D::
operator<<(std::ostream& out) const
{
for (VertexSet::const_iterator cur = Parent::vertices().begin(); cur != Parent::vertices().end(); ++cur)
out << **cur << ", ";
out << "value = " << value();
return out;
}
void fill_simplex_set(const Delaunay3D& Dt, AlphaSimplex3D::SimplexSet& simplices)
{
// Compute all simplices with their alpha values and attachment information
for(Cell_iterator cur = Dt.finite_cells_begin(); cur != Dt.finite_cells_end(); ++cur)
simplices.insert(AlphaSimplex3D(*cur));
rInfo("Cells inserted");
for(Facet_iterator cur = Dt.finite_facets_begin(); cur != Dt.finite_facets_end(); ++cur)
simplices.insert(AlphaSimplex3D(*cur, simplices, Dt));
rInfo("Facets inserted");
for(Edge_iterator cur = Dt.finite_edges_begin(); cur != Dt.finite_edges_end(); ++cur)
simplices.insert(AlphaSimplex3D(*cur, simplices, Dt, Dt.incident_facets(*cur)));
rInfo("Edges inserted");
for(Vertex_iterator cur = Dt.finite_vertices_begin(); cur != Dt.finite_vertices_end(); ++cur)
simplices.insert(AlphaSimplex3D(*cur));
rInfo("Vertices inserted");
}
template<class Filtration>
void fill_complex(const Delaunay3D& Dt, Filtration& filtration)
{
AlphaSimplex3D::SimplexSet simplices;
fill_simplex_set(Dt, simplices);
BOOST_FOREACH(const AlphaSimplex3D& s, simplices)
filtration.push_back(s);
}