Changed implementation of WeightedRips to store simplex values (max distance between simplices' vertices) as an invisible layer on top of each simplex object, so that the data() field of WeightedRips has been freed for use by the users again.
/* Operators */
template<class P>
RationalFunction<P>
RationalFunction<P>::
operator-() const
{ return RationalFunction(-numerator_,denominator_); }
template<class P>
RationalFunction<P>
RationalFunction<P>::
operator+(const RationalFunction& o) const
{ return RationalFunction(numerator_*o.denominator_ + o.numerator_*denominator_, denominator_*o.denominator_); }
template<class P>
RationalFunction<P>
RationalFunction<P>::
operator-(const RationalFunction& o) const
{ RationalFunction tmp(*this); tmp -= o; return tmp; }
//{ return RationalFunction(numerator_*o.denominator_ - o.numerator_*denominator_, denominator_*o.denominator_); }
template<class P>
RationalFunction<P>
RationalFunction<P>::
operator*(const RationalFunction& o) const
{ return RationalFunction(numerator_*o.numerator_, denominator_*o.denominator_); }
template<class P>
RationalFunction<P>
RationalFunction<P>::
operator/(const RationalFunction& o) const
{ return RationalFunction(numerator_*o.denominator_, denominator_*o.numerator_); }
template<class P>
RationalFunction<P>
RationalFunction<P>::
operator+(const typename RationalFunction<P>::CoefficientType& a) const
{ return RationalFunction(numerator_ + a*denominator_, denominator_); }
template<class P>
RationalFunction<P>
RationalFunction<P>::
operator-(const typename RationalFunction<P>::CoefficientType& a) const
{ return operator+(-a); }
template<class P>
RationalFunction<P>
RationalFunction<P>::
operator*(const typename RationalFunction<P>::CoefficientType& a) const
{ return RationalFunction(a*numerator_, denominator_); }
template<class P>
RationalFunction<P>
RationalFunction<P>::
operator/(const typename RationalFunction<P>::CoefficientType& a) const
{ return RationalFunction(numerator_, a*denominator_); }
template<class P>
RationalFunction<P>&
RationalFunction<P>::
operator+=(const RationalFunction& o)
{
numerator_ *= o.denominator_;
numerator_ += o.numerator_*denominator_;
denominator_ *= o.denominator_;
return *this;
}
template<class P>
RationalFunction<P>&
RationalFunction<P>::
operator-=(const RationalFunction& o)
{
numerator_ *= o.denominator_;
numerator_ -= o.numerator_*denominator_;
denominator_ *= o.denominator_;
return *this;
}
template<class P>
RationalFunction<P>&
RationalFunction<P>::
operator*=(const RationalFunction& o)
{
numerator_ *= o.numerator_;
denominator_ *= o.denominator_;
return *this;
}
template<class P>
RationalFunction<P>&
RationalFunction<P>::
operator/=(const RationalFunction& o)
{
numerator_ *= o.denominator_;
denominator_ *= o.numerator_;
return *this;
}
template<class P>
RationalFunction<P>&
RationalFunction<P>::
operator=(const RationalFunction& o)
{
numerator_ = o.numerator_;
denominator_ = o.denominator_;
return *this;
}
#if 0
template<class P>
RationalFunction<P>&
RationalFunction<P>::
operator=(const Polynomial& o)
{
numerator_ = o;
denominator_ = 1;
return *this;
}
#endif
/* Evaluation */
template<class P>
typename RationalFunction<P>::ValueType
RationalFunction<P>::
operator()(const typename RationalFunction<P>::ValueType& t) const
{ return numerator_(t)/denominator_(t); }
template<class P>
bool
RationalFunction<P>::
operator==(const RationalFunction& o) const
{ return (numerator_ == o.numerator_) && (denominator_ == o.denominator_); }
template<class P>
RationalFunction<P>&
RationalFunction<P>::
normalize()
{
#if 0
std::cout << "This: " << std::flush << this << std::endl;
std::cout << "Numerator address: " << std::flush << &numerator_ << std::endl;
std::cout << "Denominator address: " << std::flush << &denominator_ << std::endl;
std::cout << "Normalizing (numerator): " << std::flush << numerator_ << std::endl;
std::cout << "Normalizing (denominator): " << std::flush << denominator_ << std::endl;
#endif
Polynomial divisor = gcd(numerator_, denominator_);
numerator_ /= divisor;
denominator_ /= divisor;
return *this;
}