Changed implementation of WeightedRips to store simplex values (max distance between simplices' vertices) as an invisible layer on top of each simplex object, so that the data() field of WeightedRips has been freed for use by the users again.
#include <geometry/euclidean.h>
#include <geometry/polynomial.h>
#include <vector>
#include <iostream>
#include <cmath>
typedef UPolynomial<ZZ> PolynomialKernel;
typedef PolynomialKernel::Polynomial Polynomial;
typedef PolynomialKernel::Function RationalF;
typedef Kernel<RationalF> K;
typedef K::Point Point;
typedef K::Sphere Sphere;
typedef K::PointContainer PointContainer;
typedef K::MatrixType MatrixType;
int main()
{
K k(3);
std::vector<Point> points(7, k.origin());
points[0][0] = Polynomial(0); points[0][1] = Polynomial(0); points[0][2] = Polynomial(0);
points[1][0] = Polynomial(0); points[1][1] = Polynomial("x+2"); points[1][2] = Polynomial(0);
points[2][0] = Polynomial(0); points[2][1] = Polynomial(0); points[2][2] = Polynomial("x^2 + 5");
points[3][0] = Polynomial("x^3"); points[3][1] = Polynomial(1); points[3][2] = Polynomial("x");
points[4][0] = Polynomial(0); points[4][1] = Polynomial("x^2 + 2*x + 5"); points[4][2] = Polynomial(0);
points[5][0] = Polynomial("x^3 + 3*x + 7"); points[5][1] = Polynomial(0); points[5][2] = Polynomial(0);
points[6][0] = Polynomial(0); points[6][1] = Polynomial("x + 6"); points[6][2] = Polynomial("x");
// Solving polynomials
{
PolynomialKernel::RootStack roots;
std::cout << "Solving " << points[5][0] << ": " << std::endl;
PolynomialKernel::solve(points[5][0], roots);
while (!roots.empty()) { std::cout << roots.top() << std::endl; roots.pop(); }
}
{
Polynomial p("x^3 - 2*x + 1");
PolynomialKernel::RootStack roots;
std::cout << "Solving " << p << ": " << std::endl;
PolynomialKernel::solve(p, roots);
while (!roots.empty()) { std::cout << roots.top() << std::endl; roots.pop(); }
}
#if 0
// FIXME: explore
{
UPolynomial<QQ>::Polynomial p("1.2*x + 3.67");
UPolynomial<QQ>::RootStack roots;
UPolynomial<QQ>::solve(p, roots);
while (!roots.empty()) { std::cout << roots.top() << std::endl; roots.pop(); }
}
#endif
{
RationalF r1 = Polynomial("2*x - 4");
RationalF r2 = Polynomial("x^3 - 3");
RationalF r3 = Polynomial("x^2 - 3*x^3");
std::cout << r2 - r1 << std::endl;
std::cout << RationalF(Polynomial("2*x"), Polynomial(1)*Polynomial(1)) << std::endl;
PolynomialKernel::RootStack roots;
std::cout << "Solving " << (r2 - r1) << ": " << std::endl;
PolynomialKernel::solve(r2 - r1, roots);
while (!roots.empty()) { std::cout << roots.top() << std::endl; roots.pop(); }
std::cout << "Solving " << (r3 - r1) << ": " << std::endl;
PolynomialKernel::solve(r3 - r1, roots);
while (!roots.empty()) { std::cout << roots.top() << std::endl; roots.pop(); }
std::cout << "Solving " << (r3 - r2) << ": " << std::endl;
PolynomialKernel::solve(r3 - r2, roots);
//std::cout << "Sign of r3 at " << roots.top() << " is " << PolynomialKernel::sign_at(r3, roots.top()) << std::endl;
while (!roots.empty()) { std::cout << roots.top() << std::endl; roots.pop(); }
}
// Edges
{
PointContainer vertices(2);
vertices[0] = &points[0]; vertices[1] = &points[2];
std::cout << "{0, 2}:" << std::endl;
Sphere s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << " " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, *vertices[1]) << std::endl;
vertices[0] = &points[0]; vertices[1] = &points[3];
std::cout << "{0, 3}:" << std::endl;
s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << " " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, *vertices[1]) << std::endl;
}
#if 1
// Triangles
{
PointContainer vertices(3);
vertices[0] = &points[0]; vertices[1] = &points[3]; vertices[2] = &points[1];
std::cout << "{0, 3, 1}:" << std::endl;;
Sphere s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << " " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, *vertices[1]) << std::endl;
vertices[0] = &points[0]; vertices[1] = &points[4]; vertices[2] = &points[5];
std::cout << "{0, 4, 5}:" << std::endl;
s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << " " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, *vertices[1]) << std::endl;
// Degenerate
vertices[0] = &points[0]; vertices[1] = &points[1]; vertices[2] = &points[6];
std::cout << "{0, 1, 6}:" << std::endl;
s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << " " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, *vertices[1]) << std::endl;
}
// Tetrahedron
{
PointContainer vertices(4);
vertices[0] = &points[3]; vertices[1] = &points[1]; vertices[2] = &points[2]; vertices[3] = &points[0];
std::cout << "{3, 1, 2, 0}:" << std::endl;
Sphere s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << " " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, *vertices[1]) << std::endl;
}
// Tetrahedron
{
PointContainer vertices(3);
vertices[0] = &points[3]; vertices[1] = &points[1]; vertices[2] = &points[2];
std::cout << "{3, 1, 2}:" << std::endl;
Sphere s = k.circumsphere(vertices);
std::cout << "Circumsphere: " << s.center() << ", radius: " << s.squared_radius() << std::endl;
std::cout << "Side of: " << k.side_of_circumsphere(vertices, points[0]) << std::endl;
}
#endif
}